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Abstract

The present document describes the five bar mechanism and the simu-
lation chosen as a benchmark problem for sensitivity analysis of multibody
systems.

1 Description of the five bar mechanism

The case study chosen is the five-bar mechanism with 2 degrees of freedom
shown in figure 1.
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Figure 1: The five-bar mechanism

The five bars are constrained by five revolute joints located in points A (ori-
gin of global coordinates), 1, 2, 3 and B, with A and B attached to the ground.
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The masses of the bars aremA1 = 1 kg,m12 = 1.5 kg,m23 = 1.5 kg,m3B = 1 kg
and the polar moments of inertia are calculated under the assumption of an uni-
form distribution of mass. The mechanism is subjected to the action of gravity,

g =
[
0 −9.81 0

]T
m/s2, and two elastic forces coming from the springs. The

stiffness coefficients of the springs are k1 = k2 = 100 N/m and their natural
lengths are chosen Ls1 =

√
22 + 12 =

√
5 m and Ls2 =

√
22 + 0.52 =

√
17/2 =√

4.25 m, coincident with the initial configuration shown in Fig.1.

2 Five-bar mechanism: dynamic problem de-
scription and solution

The response of the system is shown in figures 2, 3 and 4 for a 5 seconds
simulation starting from the configuration presented in figure 1 with zero initial
velocities. Figure 2 represents the distances s1, s2 and their time derivatives,
ṡ1, ṡ2, s̈1, s̈2; figure 3 shows the angles α1, α2 and time derivatives α̇1, α̇2, α̈1,
α̈2; while figure 4 represents the position, velocity and acceleration of point 2
in the x-y plane.

The files DynDistances.csv, DynAngles.csv, Dynp2.csv, Dyndp2dt.csv and
Dynd2p2dt2.csv contain the numerical results sampled every 10−2 s for checking.
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Figure 2: Dynamic response: distances s1, s2 (top); time derivatives ṡ1, ṡ2
(middle); second time derivatives s̈1, s̈2 (bottom).
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Figure 3: Dynamic response: angles α1 and α2 (top); time derivatives α̇1, α̇2

(middle); second time derivatives α̈1, α̈2 (bottom).

3 Five-bar mechanism: sensitivity problem de-
scription and solution

For the sensitivity analysis, the following array of objective functions is consid-
ered:

ψ =

ψ1

ψ2

ψ3

 (1)

with

ψ1 =

∫ tF

t0

(r2 − r20)
T
(r2 − r20) dt =

∫ tF

t0

g1dt (2a)

ψ2 =

∫ tF

t0

ṙT2 ṙ2dt =

∫ tF

t0

g2dt (2b)

ψ3 =

∫ tF

t0

r̈T2 r̈2dt =

∫ tF

t0

g3dt (2c)

As parameters to obtain the sensitivities, three different sets of parameters
are going to be considered:

1. Parameters affecting the forces: with this set of parameters we consider
the case in which the parameters affect the generalized forces vector, more
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Figure 4: Dynamic response of point 2: positions (top); velocities (middle);
accelerations (bottom).

specifically the natural lengths of the springs are going to be chosen as

parameters, ρ1 =
[
L01 L02

]T
.

2. Parameters affecting the geometry of masses: with this third set of pa-
rameters, we take into account the case in which the parameters affect to
some components of the mass matrix (masses, center of masses or inertia
tensors) and/or the gravity forces vector. In this benchmark example the
mass of bar 1 and the longitudinal local coordinate of its center of mass

are considered: ρ2 =
[
mA1 x̄GA1

]T
.

3. Parameters affecting the geometry: with the second set of parameters,
we explore the case in which the parameters affect the geometry of the
system. In this case we will consider the length of bar A1, ρ3 =

[
LA1

]
.

Then, the vector of parameters for the sensitivity analysis is ρT =
[
ρT1 ρT2 ρT3

]
The outcome of the sensitivity analysis is the gradient of the objective func-

tion (2), ψ′ = dψ
dρ .

The initial sensitivities of the degrees of freedom are chosen such that [α′
1]t0 =[

dα1

dρ

]
t0

=
[
0 0 0 0 0

]
= [α′

2]t0 =
[
dα2

dρ

]
t0
.

The objective functions and their sensitivities are shown in figures 5 and 6
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and the results are also included in the data files, SensitObjfunc1.csv, SensitO-
bjfunc2.csv and SensitObjfunc3.csv sampled every 10−2 s.
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Figure 5: Objective functions over time
∫ t

t0
gidt with t ∈ [0, tF ], i = 1, 2, 3.

The reference solutions provided for the dynamics and sensitivity analysis
have been obtained with a time step of 10−5 s using two different formulations
1 to guarantee convergence.

4 Benchmark error calculation

The final values of the sensitivities (t = 5 s) for the reference solution are
included in table 1 along with the maximum allowed error for each sensitivity.
The error of each solution should be evaluated per each objective function as
the 2-norm of the difference between the solution and the reference:

errorψ
i

= ∥
(
ψi

)′ − (
ψi

)′
Ref

∥
2
, i = 1, 2, 3. (3)

Valid solutions should be below the maximum error tolerance for each ob-
jective function. The tolerances are included in the last column of Table 1:

errorψ
i

≤ ϵi, i = 1, 2, 3. (4)

1More specifically, the formulations described in [Dopico et al., 2015] and
[Dopico et al., 2018] have been used.
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Figure 6: Gradient of the objective functions over time
∫ t

t0

dgi
dρ dt with t ∈ [0, tF ],

i = 1, 2, 3.

A single condition is required for publishing in the benchmark platform. For
this purpose, the following single condition can be followed from conditions (4):

errorψ =

3∑
i=1

ϵ3
ϵi
errorψ

i

≤ 3ϵ3 = 2.1 (5)

Observe that condition (5) is necessary but not sufficient for (4) but it can
be considered as a reasonable metric for the satisfaction of all the objective
functions.

The file results.txt, attached to the solution, provides 3 rows with the sensi-
tivities and the error (3), corresponding to each one of the objective functions.
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Reference solution Maximum error tolerance (ϵi)(
ψ1

)′
Ls1

-4.228811

1× 10−3

(
ψ1

)′
Ls2

3.211604(
ψ1

)′
mA1

0.318657(
ψ1

)′
xG
A1

0.442351(
ψ1

)′
LA1

3.359810(
ψ2

)′
Ls1

-15.45207

1× 10−2

(
ψ2

)′
Ls2

50.30879(
ψ2

)′
mA1

0.97012(
ψ2

)′
xG
A1

0.74560(
ψ2

)′
LA1

-27.35924(
ψ3

)′
Ls1

221.6400

7× 10−1

(
ψ3

)′
Ls2

2436.607(
ψ3

)′
mA1

-32.4975(
ψ3

)′
xG
A1

-85.6567(
ψ3

)′
LA1

-2546.590

Table 1: Reference solution for sensitivities at t = 5 s. and maximum allowed
error.

body formulations. Journal of Computational and Nonlinear Dynamics, 10
(1)(1):1–8.
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